首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39439篇
  免费   4794篇
  国内免费   1415篇
电工技术   1737篇
综合类   1644篇
化学工业   11378篇
金属工艺   4244篇
机械仪表   2484篇
建筑科学   1829篇
矿业工程   1106篇
能源动力   1478篇
轻工业   1468篇
水利工程   252篇
石油天然气   1047篇
武器工业   318篇
无线电   2398篇
一般工业技术   10504篇
冶金工业   1201篇
原子能技术   609篇
自动化技术   1951篇
  2024年   81篇
  2023年   626篇
  2022年   879篇
  2021年   1423篇
  2020年   1290篇
  2019年   1256篇
  2018年   1370篇
  2017年   1529篇
  2016年   1723篇
  2015年   2057篇
  2014年   2350篇
  2013年   2538篇
  2012年   2299篇
  2011年   2926篇
  2010年   2173篇
  2009年   2228篇
  2008年   1895篇
  2007年   2213篇
  2006年   2150篇
  2005年   1795篇
  2004年   1637篇
  2003年   1439篇
  2002年   1229篇
  2001年   1003篇
  2000年   898篇
  1999年   864篇
  1998年   704篇
  1997年   604篇
  1996年   510篇
  1995年   450篇
  1994年   335篇
  1993年   208篇
  1992年   210篇
  1991年   177篇
  1990年   168篇
  1989年   143篇
  1988年   76篇
  1987年   41篇
  1986年   39篇
  1985年   19篇
  1984年   21篇
  1983年   14篇
  1982年   10篇
  1981年   11篇
  1980年   6篇
  1979年   3篇
  1976年   3篇
  1975年   4篇
  1973年   4篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
This paper presents a new micromechanical damage model, called “First Pseudo-Grain Damage” (FPGD) model, to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced thermoplastic materials typically produced by injection molding. The model combines mean-field homogenization theory with a continuum damage model, leading to a semi-analytical estimate of the composite incremental response that is convenient for the large scale simulation of composite structures. Each representative volume element (RVE) of the composite is decomposed into a set of pseudo-grains (PGs), which are two-phase composites with aligned fibers of the same aspect ratio. The PGs are homogenized individually according to a nonlinear Mori–Tanaka scheme. Then, a self-consistent scheme is applied to the aggregate of homogenized PGs. An anisotropic damage model is used at the PG level which enables accommodating arbitrary multiaxial and non-monotonic loading histories. Damage evolution inside PGs progressively affects the overall stiffness and strength of the RVE up to total failure. An evaluation of the proposed model against experimental data is conducted for short glass–fiber reinforced polyamide 6,6 (PA6,6). It is shown that the model yields satisfactory predictions of the response under uniaxial tension on samples with different fiber contents and under various loading directions relative to the main injection flow direction.  相似文献   
992.
An experimental study is described in this paper dealing with the tension–tension fatigue and failure mechanism of 3D MWK composites with different fiber architectures and material sizes. Macroscopic fracture morphology and SEM micrographs are examined to understand the fatigue damage and failure mechanism. The results show the fatigue properties and failure mechanism of composites can be affected significantly by the fiber architecture and material size. The fatigue life of material A(0°/0°/0°/0°) with small fiber orientation angle is significantly longer than that of material B(+45°/−45°/+45°/−45°). For material A, the fatigue properties of the long composite are better than that of the short one. It is 0° fiber bundles fracture under fatigue stress which cause the material failure and the long composite provides more space for the formation and propagation of local fatigue micro-cracks. However, for material B, the short composites have better fatigue properties. Moreover, the materials show typical ±45° zigzag fatigue fracture and obvious shear behavior. The fatigue cracks for the long composite can be spread more quickly along the fiber/matrix interface due to the fiber bundles realignment.  相似文献   
993.
The study presents the preparation of the new magnetic nanocomposite based on PLGA and magnetite. The PLGA used to obtain the magnetic nanocomposites was synthesized by the copolymerization of lactic acid with glycolic acid, in the presence of tin octanoate [Sn(Oct)2] as catalyst, by polycondensation procedure. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3. The particles size of magnetite was 420 nm, and the saturation magnetization 62.78 emu/g, while the PLGA/magnetite nanocomposite size was 864 nm and the saturation magnetization 39.44 emu/g. The magnetic nanocomposites were characterized by FT-IR, DLS technique, SEM, VSM and simultaneous thermal analyses (TG–FTIR–MS). The polymer matrix PLGA acts as a shell and carrier for the active component, while magnetite is the component which makes targeting possible by external magnetic field manipulation. Based on the gases resulted by thermal degradation of PLGA copolymer, using the simultaneous analysis TG–FTIR–MS, a possible degradation mechanism was proposed.  相似文献   
994.
A new method named two-step emulsification process was developed to synthesize high solid content waterborne polyurethanes by strict control of the bimodal particle size distribution. In the first step, a series of 40% solid content polyester-based (WPU-1) with low content of hydrophilic group and large particle size were firstly synthesized. In the second step, polyether-based prepolymers (WPU-2 prepolymers) with high content of hydrophilic group were firstly prepared and WPU-1 emulsions were used to emulsify WPU-2 prepolymers to obtain the final emulsions with high solid content (WPU-3). The particle size of WPU-3 present bimodal distribution and the diameter ratio and volume percentage of large particles to small particles in WPU-3 were able to be strictly controlled by this method. The viscosity of WPU-3 with 55% solid content was only 489.1 mPa s−1 when the diameter ratio of large particles to small particles was 9.2 and the volume percentage of large particles was 74%.  相似文献   
995.
This paper presents a novel method to evaluate the characteristics of the spherical hydrostatic supporting system for the floated inertial platform in dynamic environments. This hydrostatic supporting system consists of eight suspension pads fixed on the inner sphere. The force model for each single suspension pad is established. The dynamic equations for the inner sphere are also derived from the geometrical configuration. The stable time and stable deviation of the inner sphere in different dynamic environments are calculated. The results show that the hydrostatic supporting system can make the inner sphere resistant to the vehicle acceleration effectively and omnidirectionally.  相似文献   
996.
Fiber orientations play the decisive role in grinding process of woven ceramic matrix composites, but the influence of woven fibers in grinding process is not clear. This paper studies the surface quality and grinding force by comparing different woven surfaces. Through a series of experiments in optimized sampling conditions, we analyze characteristics of the material surface topography height, wave distribution and surface support properties in details. And we find some outstanding characteristics of the surface microstructure. We also study the influence of grinding processing parameters on surface microstructure. The results show that machining surface which contains more parallel fibers is rougher and more keenness than gauss surface. Grinding wheel speed and depth of cut have great influence on surface topography and surface support properties. And it is discovered that grinding forces are also highly dependent on fiber orientations. The mechanism of the grinding phenomena is also analyzed in this paper according to knowledge of fracture mechanics and mechanical damage phenomenology. The research obtained will be an important technical support on improving the processing quality of woven ceramic matrix composites.  相似文献   
997.
Inspired by biological systems in which damage triggers an autonomic healing response, a polymer composite material that can heal itself when cracked has been developed. In this work, compression and tensile properties of a self-healed fibre reinforced epoxy composites were investigated. Microencapsulated epoxy and mercaptan healing agents were incorporated into a glass fibre reinforced epoxy matrix to produce a polymer composite capable of self-healing. The self-repair microcapsules in the epoxy resin would break as a result of microcrack expansion in the matrix, and letting out the strong repair agent to recover the mechanical strength with a relative healing efficiency of up to 140% which is a ratio of healed property value to initial property value or healing efficiency up to 119% if using the healed strength with the damaged strength.  相似文献   
998.
The development of a high cooling power and high efficiency 4.2 K two stage G-M cryocooler is critically important given its broad applications in low temperature superconductors, MRI, infrared detector and cryogenic electronics. A high efficiency 1.5 W/4.2 K pneumatic-drive G-M cryocooler has recently been designed and developed by ARS. The effect of expansion volume rate and operation conditions on the cooling performance has been experimentally investigated. A typical cooling performance of 1.5 W/4.2 K has been achieved, and the minimum temperature of the second stage is 2.46 K. The steady input power of the compressor at 60 Hz is 6.8 kW, while the operation speed of the rotary valve is 30 rpm. A maximum cooling power of 1.75 W/4.2 K has been obtained in test runs.  相似文献   
999.
The short-time creep behavior at tensile and single cantilever mode of deformation for a series of biodegradable composites was thoroughly studied. The composites were based on a biodegradable polymer matrix consisted a blend of poly(butylene adipate-terephthalate) (PBAT) copolyester, produced by non-renewable resources, and Polylactic acid (PLA). The matrix was reinforced with three different wood fiber types, at 20 and 30 wt%. The experimental data were analyzed in terms of Findley's and Burger's viscoelastic models. The effect of stress and temperature and wood fiber type on the material's creep response was analytically studied, while the Burger's model parameters were related to the composites morphology. In all cases, the wood fibers improved the creep resistance of the composites.  相似文献   
1000.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号